arXiv Analytics

Sign in

arXiv:2403.13603 [math.AP]AbstractReferencesReviewsResources

Steady-states of the Gierer-Meinhardt system in exterior domains

Marius Ghergu, Jack McNicholl

Published 2024-03-20Version 1

We discuss the existence and nonexistence of solutions to the steady-state Gierer-Meinhardt system $$ \begin{cases} \displaystyle -\Delta u=\frac{u^p}{v^q}+\lambda \rho(x) \,, u>0 &\quad\mbox{ in }\mathbb{R}^N\setminus K,\\[0.1in] \displaystyle -\Delta v=\frac{u^m}{v^s} \,, v>0 &\quad\mbox{ in }\mathbb{R}^N\setminus K,\\[0.1in] \displaystyle \;\;\; \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0 &\quad\mbox{ on }\partial K,\\[0.1in] \displaystyle \;\;\; u(x), v(x)\to 0 &\quad\mbox{ as }|x|\to \infty, \end{cases} $$ where $K\subset \mathbb{R}^N$ $(N\geq 2)$ is a compact set, $\rho\in C^{0,\gamma}_{loc}(\overline{\mathbb{R}^N\setminus K})$, $\gamma\in (0,1)$, is a nonnegative function and $p,q,m,s, \lambda>0$. Combining fixed point arguments with suitable barrier functions, we construct solutions with a prescribed asymptotic growth at infinity. Our approach can be extended to many other classes of semilinear elliptic systems with various sign of exponents.

Related articles: Most relevant | Search more
arXiv:1203.3154 [math.AP] (Published 2012-03-14)
Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains
arXiv:1401.2655 [math.AP] (Published 2014-01-12)
Serfati solutions to the 2D Euler equations on exterior domains
arXiv:2401.05829 [math.AP] (Published 2024-01-11)
Asymptotic behavior for fully nonlinear elliptic equations in exterior domains