{ "id": "2403.13603", "version": "v1", "published": "2024-03-20T13:51:48.000Z", "updated": "2024-03-20T13:51:48.000Z", "title": "Steady-states of the Gierer-Meinhardt system in exterior domains", "authors": [ "Marius Ghergu", "Jack McNicholl" ], "categories": [ "math.AP" ], "abstract": "We discuss the existence and nonexistence of solutions to the steady-state Gierer-Meinhardt system $$ \\begin{cases} \\displaystyle -\\Delta u=\\frac{u^p}{v^q}+\\lambda \\rho(x) \\,, u>0 &\\quad\\mbox{ in }\\mathbb{R}^N\\setminus K,\\\\[0.1in] \\displaystyle -\\Delta v=\\frac{u^m}{v^s} \\,, v>0 &\\quad\\mbox{ in }\\mathbb{R}^N\\setminus K,\\\\[0.1in] \\displaystyle \\;\\;\\; \\frac{\\partial u}{\\partial \\nu}=\\frac{\\partial v}{\\partial \\nu}=0 &\\quad\\mbox{ on }\\partial K,\\\\[0.1in] \\displaystyle \\;\\;\\; u(x), v(x)\\to 0 &\\quad\\mbox{ as }|x|\\to \\infty, \\end{cases} $$ where $K\\subset \\mathbb{R}^N$ $(N\\geq 2)$ is a compact set, $\\rho\\in C^{0,\\gamma}_{loc}(\\overline{\\mathbb{R}^N\\setminus K})$, $\\gamma\\in (0,1)$, is a nonnegative function and $p,q,m,s, \\lambda>0$. Combining fixed point arguments with suitable barrier functions, we construct solutions with a prescribed asymptotic growth at infinity. Our approach can be extended to many other classes of semilinear elliptic systems with various sign of exponents.", "revisions": [ { "version": "v1", "updated": "2024-03-20T13:51:48.000Z" } ], "analyses": { "subjects": [ "35J47", "35B45", "35J75", "35B40" ], "keywords": [ "exterior domains", "semilinear elliptic systems", "steady-state gierer-meinhardt system", "compact set", "prescribed asymptotic growth" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }