arXiv:2403.09518 [math.CO]AbstractReferencesReviewsResources
About Berge-Füredi's conjecture on the chromatic index of hypergraphs
Alain Bretto, Alain Faisant, François Hennecart
Published 2024-03-14Version 1
We show that the chromatic index of a hypergraph $\mathcal{H}$ satisfies Berge-F\"uredi conjectured bound $\mathrm{q}(\mathcal{H})\le \Delta([\mathcal{H}]_2)+1$ under certain hypotheses on the antirank $\mathrm{ar}(\mathcal{H})$ or on the maximum degree $\Delta(\mathcal{H})$. This provides sharp information in connection with Erd\H{o}s-Faber-Lov\'asz Conjecture which deals with the coloring of a family of cliques that intersect pairwise in at most one vertex.
Related articles: Most relevant | Search more
arXiv:1603.05018 [math.CO] (Published 2016-03-16)
Chromatic index, treewidth and maximum degree
arXiv:1710.08982 [math.CO] (Published 2017-10-24)
$t$-cores for $(Δ+t)$-edge-colouring
arXiv:1711.09356 [math.CO] (Published 2017-11-26)
On the spectrum of hypergraphs