{ "id": "2403.09518", "version": "v1", "published": "2024-03-14T16:02:01.000Z", "updated": "2024-03-14T16:02:01.000Z", "title": "About Berge-Füredi's conjecture on the chromatic index of hypergraphs", "authors": [ "Alain Bretto", "Alain Faisant", "François Hennecart" ], "categories": [ "math.CO" ], "abstract": "We show that the chromatic index of a hypergraph $\\mathcal{H}$ satisfies Berge-F\\\"uredi conjectured bound $\\mathrm{q}(\\mathcal{H})\\le \\Delta([\\mathcal{H}]_2)+1$ under certain hypotheses on the antirank $\\mathrm{ar}(\\mathcal{H})$ or on the maximum degree $\\Delta(\\mathcal{H})$. This provides sharp information in connection with Erd\\H{o}s-Faber-Lov\\'asz Conjecture which deals with the coloring of a family of cliques that intersect pairwise in at most one vertex.", "revisions": [ { "version": "v1", "updated": "2024-03-14T16:02:01.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "chromatic index", "berge-füredis conjecture", "hypergraph", "maximum degree", "sharp information" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }