arXiv Analytics

Sign in

arXiv:2402.04810 [math.DS]AbstractReferencesReviewsResources

Hausdorff dimension of recurrence sets for matrix transformations of tori

Zhangnan Hu, Bing Li

Published 2024-02-07Version 1

Let $T\colon\mathbb{T}^d\to \mathbb{T}^d$, defined by $T x=Ax(\bmod 1)$, where $A$ is a $d\times d$ integer matrix with eigenvalues $1<|\lambda_1|\le|\lambda_2|\le\dots\le|\lambda_d|$. We investigate the Hausdorff dimension of the recurrence set \[R(\psi):=\{x\in\mathbb{T}^d\colon T^nx\in B(x,\psi(n)) {\rm ~for~infinitely~ many~}n\}\] for $\alpha\ge\log|\lambda_d/\lambda_1|$, where $\psi$ is a positive decreasing function defined on $\mathbb{N}$ and its lower order at infinity is $\alpha=\liminf\limits_{n\to\infty}\frac{-\log \psi(n)}{n}$. In the case that $A$ is diagonalizable over $\mathbb{Q}$ with integral eigenvalues, we obtain the dimension formula.

Related articles: Most relevant | Search more
arXiv:0903.2216 [math.DS] (Published 2009-03-12, updated 2009-10-21)
The Hausdorff dimension of the projections of self-affine carpets
arXiv:1006.4498 [math.DS] (Published 2010-06-23)
On Hausdorff dimension of the set of closed orbits for a cylindrical transformation
arXiv:1210.7469 [math.DS] (Published 2012-10-28, updated 2014-06-11)
Non-autonomous conformal iterated function systems and Moran-set constructions