{ "id": "2402.04810", "version": "v1", "published": "2024-02-07T12:55:24.000Z", "updated": "2024-02-07T12:55:24.000Z", "title": "Hausdorff dimension of recurrence sets for matrix transformations of tori", "authors": [ "Zhangnan Hu", "Bing Li" ], "categories": [ "math.DS" ], "abstract": "Let $T\\colon\\mathbb{T}^d\\to \\mathbb{T}^d$, defined by $T x=Ax(\\bmod 1)$, where $A$ is a $d\\times d$ integer matrix with eigenvalues $1<|\\lambda_1|\\le|\\lambda_2|\\le\\dots\\le|\\lambda_d|$. We investigate the Hausdorff dimension of the recurrence set \\[R(\\psi):=\\{x\\in\\mathbb{T}^d\\colon T^nx\\in B(x,\\psi(n)) {\\rm ~for~infinitely~ many~}n\\}\\] for $\\alpha\\ge\\log|\\lambda_d/\\lambda_1|$, where $\\psi$ is a positive decreasing function defined on $\\mathbb{N}$ and its lower order at infinity is $\\alpha=\\liminf\\limits_{n\\to\\infty}\\frac{-\\log \\psi(n)}{n}$. In the case that $A$ is diagonalizable over $\\mathbb{Q}$ with integral eigenvalues, we obtain the dimension formula.", "revisions": [ { "version": "v1", "updated": "2024-02-07T12:55:24.000Z" } ], "analyses": { "subjects": [ "37C45", "37B20", "28A80" ], "keywords": [ "hausdorff dimension", "recurrence set", "matrix transformations", "integer matrix", "lower order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }