arXiv Analytics

Sign in

arXiv:2401.15640 [math.AG]AbstractReferencesReviewsResources

A Plücker coordinate mirror for partial flag varieties and quantum Schubert calculus

Changzheng Li, Konstanze Rietsch, Mingzhi Yang, Chi Zhang

Published 2024-01-28Version 1

We construct a Pl\"ucker coordinate superpotential $\mathcal{F}_-$ that is mirror to a partial flag variety $\mathbb{ F}\ell(n_\bullet)$. Its Jacobi ring recovers the small quantum cohomology of $\mathbb{ F}\ell(n_\bullet)$ and we prove a folklore conjecture in mirror symmetry. Namely, we show that the eigenvalues for the action of the first Chern class $c_1(\mathbb{ F}\ell(n_\bullet))$ on quantum cohomology are equal to the critical values of $\mathcal{F}_-$. We achieve this by proving new identities in quantum Schubert calculus that are inspired by our formula for $\mathcal{F}_-$ and the mirror symmetry conjecture.

Related articles: Most relevant | Search more
arXiv:2011.08093 [math.AG] (Published 2020-11-16)
A Plücker coordinate mirror for type A flag varieties
arXiv:math/0405155 [math.AG] (Published 2004-05-09)
The Algebra of Schubert Calculus
arXiv:0809.4966 [math.AG] (Published 2008-09-29)
Quantum Pieri rules for isotropic Grassmannians