{ "id": "2401.15640", "version": "v1", "published": "2024-01-28T12:28:40.000Z", "updated": "2024-01-28T12:28:40.000Z", "title": "A Plücker coordinate mirror for partial flag varieties and quantum Schubert calculus", "authors": [ "Changzheng Li", "Konstanze Rietsch", "Mingzhi Yang", "Chi Zhang" ], "comment": "41 pages", "categories": [ "math.AG", "math.CO" ], "abstract": "We construct a Pl\\\"ucker coordinate superpotential $\\mathcal{F}_-$ that is mirror to a partial flag variety $\\mathbb{ F}\\ell(n_\\bullet)$. Its Jacobi ring recovers the small quantum cohomology of $\\mathbb{ F}\\ell(n_\\bullet)$ and we prove a folklore conjecture in mirror symmetry. Namely, we show that the eigenvalues for the action of the first Chern class $c_1(\\mathbb{ F}\\ell(n_\\bullet))$ on quantum cohomology are equal to the critical values of $\\mathcal{F}_-$. We achieve this by proving new identities in quantum Schubert calculus that are inspired by our formula for $\\mathcal{F}_-$ and the mirror symmetry conjecture.", "revisions": [ { "version": "v1", "updated": "2024-01-28T12:28:40.000Z" } ], "analyses": { "subjects": [ "14J33", "14M15", "14N15", "14N35" ], "keywords": [ "partial flag variety", "quantum schubert calculus", "plücker coordinate mirror", "mirror symmetry conjecture", "small quantum cohomology" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }