arXiv:2401.14197 [math.CA]AbstractReferencesReviewsResources
Proof of conjectures on series with summands involving $ \binom{2k}{k}8^k/(\binom{3k}{k}\binom{6k}{3k})$
Published 2024-01-25Version 1
Using cyclotomic multiple zeta values of level $8$, we confirm and generalize several conjectural identities on infinite series with summands involving $\binom{2k}k8^k/(\binom{3k}k\binom{6k}{3k})$. For example, we prove that \[\sum_{k=0}^\infty\frac{(350k-17)\binom{2k}k8^k} {\binom{3k}k\binom{6k}{3k}}=15\sqrt2\,\pi+27\] and \[\sum_{k=1}^\infty\frac{\left\{(5k-1)\left[16\mathsf H_{2k-1}^{(2)}-3\mathsf H_{k-1}^{(2)}\right]-\frac{12(6k-1)}{(2k-1)^2}\right\}\binom{2k}k8^k} {k(2k-1)\binom{3k}k\binom{6k}{3k}}=\frac{\pi^3}{12\sqrt2},\] where $\mathsf H^{(2)}_m$ denotes the second-order harmonic number $\sum_{0<j\leq m}\frac1{j^2}$.
Comments: 23 pages, 5 tables. A sequel to arXiv:2401.12083v1
Related articles: Most relevant | Search more
arXiv:1908.02010 [math.CA] (Published 2019-08-06)
Proofs for certain conjectures of Gosper on Pi_{q}
Some conjectures on addition and multiplication of complex (real) numbers
arXiv:2302.13830 [math.CA] (Published 2023-02-24)
Part 2. Infinite series and logarithmic integrals associated to differentiation with respect to parameters of the Whittaker $\mathrm{W}_{κ,μ}\left( x\right) $ function