arXiv:0807.3010 [math.CA]AbstractReferencesReviewsResources
Some conjectures on addition and multiplication of complex (real) numbers
Published 2008-07-18, updated 2008-11-21Version 25
We discuss conjectures related to the following two conjectures: (1) for each complex numbers x_1,...,x_n there exist rationals y_1,...,y_n \in [-2^{n-1},2^{n-1}] such that \forall i \in {1,...,n} (x_i=1 \Rightarrow y_i=1) \forall i,j,k \in {1,...,n} (x_i+x_j=x_k \Rightarrow y_i+y_j=y_k) (2) for each complex (real) numbers x_1,...,x_n there exist complex (real) numbers y_1,...,y_n such that \forall i \in {1,...,n} |y_i| \leq 2^{2^{n-2}} \forall i \in {1,...,n} (x_i=1 \Rightarrow y_i=1) \forall i,j,k \in {1,...,n} (x_i+x_j=x_k \Rightarrow y_i+y_j=y_k) \forall i,j,k \in {1,...,n} (x_i \cdot x_j=x_k \Rightarrow y_i \cdot y_j=y_k)
Comments: 11 pages, LaTeX2e, added various versions of Conjecture 5
Journal: Int. Math. Forum 4 (2009), no. 9-12, pp. 521-530
Categories: math.CA
Keywords: conjectures, multiplication
Tags: journal article
Related articles: Most relevant | Search more
Frames by Multiplication
arXiv:2403.09729 [math.CA] (Published 2024-03-13)
Proof and generalization of conjectures of Ramanujan Machine
arXiv:1908.02010 [math.CA] (Published 2019-08-06)
Proofs for certain conjectures of Gosper on Pi_{q}