arXiv:2401.12775 [math.NT]AbstractReferencesReviewsResources
On $p$-adic Hurwitz-type spectral zeta functions
Published 2024-01-23Version 1
Let $\left\{E_n\right\}_{n=1}^{\infty}$ be the set of energy levels corresponding to a Hamiltonian $H$. Denote by $$\lambda_{0}=0~~\textrm{and}~~\lambda_{n}=E_{n}$$ for $n\in\mathbb N.$ In this paper, we shall construct and investigate the $p$-adic counterparts of the Hurwitz-type spectral zeta function \begin{equation} \zeta^{H}(s,\lambda)=\sum_{n=0}^{\infty}\frac{1}{(\lambda_{n}+\lambda)^{s}} \end{equation} and its alternating form \begin{equation} \zeta_{E}^{H}(s,\lambda)=2\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(\lambda_{n}+\lambda)^{s}} \end{equation} in a parallel way.
Comments: 19 pages
Related articles:
arXiv:1308.6451 [math.NT] (Published 2013-08-29)
The Digamma function, Euler-Lehmer constants and their $p$-adic counterparts
arXiv:2303.16114 [math.NT] (Published 2023-03-28)
Algebraicity of $L$-values for $\text{GSp}_4 \times \text{GL}_2$ and $\text{GSp}_4 \times \text{GL}_2 \times \text{GL}_2$