{ "id": "2401.12775", "version": "v1", "published": "2024-01-23T14:01:27.000Z", "updated": "2024-01-23T14:01:27.000Z", "title": "On $p$-adic Hurwitz-type spectral zeta functions", "authors": [ "Su Hu", "Min-Soo Kim" ], "comment": "19 pages", "categories": [ "math.NT", "math-ph", "math.CA", "math.MP" ], "abstract": "Let $\\left\\{E_n\\right\\}_{n=1}^{\\infty}$ be the set of energy levels corresponding to a Hamiltonian $H$. Denote by $$\\lambda_{0}=0~~\\textrm{and}~~\\lambda_{n}=E_{n}$$ for $n\\in\\mathbb N.$ In this paper, we shall construct and investigate the $p$-adic counterparts of the Hurwitz-type spectral zeta function \\begin{equation} \\zeta^{H}(s,\\lambda)=\\sum_{n=0}^{\\infty}\\frac{1}{(\\lambda_{n}+\\lambda)^{s}} \\end{equation} and its alternating form \\begin{equation} \\zeta_{E}^{H}(s,\\lambda)=2\\sum_{n=0}^{\\infty}\\frac{(-1)^{n}}{(\\lambda_{n}+\\lambda)^{s}} \\end{equation} in a parallel way.", "revisions": [ { "version": "v1", "updated": "2024-01-23T14:01:27.000Z" } ], "analyses": { "subjects": [ "11M35", "11S80", "11B68", "81Q10" ], "keywords": [ "adic hurwitz-type spectral zeta functions", "adic counterparts", "parallel way", "energy levels corresponding" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }