arXiv Analytics

Sign in

arXiv:2401.04072 [math.AG]AbstractReferencesReviewsResources

K3 surfaces with real or complex multiplication

Eva Bayer-Fluckiger, Bert van Geemen, Matthias Schütt

Published 2024-01-08Version 1

Let $E$ be a totally real number field of degree $d$ and let $m \geq 3$ be an integer. We show that if $md \leq 21$ then there exists an $m-2$-dimensional family of complex projective $K3$ surfaces with real multiplication by $E$. An analogous result is proved for CM number fields.

Related articles: Most relevant | Search more
arXiv:1208.5599 [math.AG] (Published 2012-08-28)
Abelian varieties with quaternion and complex multiplication
arXiv:math/0202109 [math.AG] (Published 2002-02-12)
Real Multiplication and noncommutative geometry
arXiv:math/9909052 [math.AG] (Published 1999-09-09, updated 1999-09-12)
Hyperelliptic jacobians without complex multiplication