{ "id": "2401.04072", "version": "v1", "published": "2024-01-08T18:18:33.000Z", "updated": "2024-01-08T18:18:33.000Z", "title": "K3 surfaces with real or complex multiplication", "authors": [ "Eva Bayer-Fluckiger", "Bert van Geemen", "Matthias Schütt" ], "comment": "10 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $E$ be a totally real number field of degree $d$ and let $m \\geq 3$ be an integer. We show that if $md \\leq 21$ then there exists an $m-2$-dimensional family of complex projective $K3$ surfaces with real multiplication by $E$. An analogous result is proved for CM number fields.", "revisions": [ { "version": "v1", "updated": "2024-01-08T18:18:33.000Z" } ], "analyses": { "keywords": [ "complex multiplication", "k3 surfaces", "cm number fields", "totally real number field", "real multiplication" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }