arXiv Analytics

Sign in

arXiv:2311.16724 [math.FA]AbstractReferencesReviewsResources

On commutators of idempotents

Roman Drnovšek

Published 2023-11-28Version 1

Let $T$ be an operator on Banach space $X$ that is similar to $- T$ via an involution $U$. Then $U$ decomposes the Banach space $X$ as $X = X_1 \oplus X_2$ with respect to which decomposition we have $U = \left(\begin{matrix} I_1 & 0 \\ 0 & -I_2 \end{matrix} \right)$, where $I_i$ is the identity operator on the closed subspace $X_i$ ($i=1, 2$). Furthermore, $T$ has necessarily the form $T = \left(\begin{matrix} 0 & * \\ * & 0 \end{matrix} \right) $ with respect to the same decomposition. In this note we consider the question when $T$ is a commutator of the idempotent $P = \left(\begin{matrix} I_1 & 0 \\ 0 & 0 \end{matrix} \right)$ and some idempotent $Q$ on $X$. We also determine which scalar multiples of unilateral shifts on $l^p$ spaces ($1 \le p \le \infty$) are commutators of idempotent operators.

Comments: 7 pages
Categories: math.FA
Subjects: 47B47, 39B42
Related articles: Most relevant | Search more
arXiv:math/0610421 [math.FA] (Published 2006-10-12)
Smooth norms and approximation in Banach spaces of the type C(K)
arXiv:math/9508207 [math.FA] (Published 1995-08-01)
Vector-valued Walsh-Paley martingales and geometry of Banach spaces
arXiv:math/0412171 [math.FA] (Published 2004-12-08)
Embedding $\ell_{\infty}$ into the space of all Operators on Certain Banach Spaces