{ "id": "2311.16724", "version": "v1", "published": "2023-11-28T12:08:02.000Z", "updated": "2023-11-28T12:08:02.000Z", "title": "On commutators of idempotents", "authors": [ "Roman Drnovšek" ], "comment": "7 pages", "categories": [ "math.FA" ], "abstract": "Let $T$ be an operator on Banach space $X$ that is similar to $- T$ via an involution $U$. Then $U$ decomposes the Banach space $X$ as $X = X_1 \\oplus X_2$ with respect to which decomposition we have $U = \\left(\\begin{matrix} I_1 & 0 \\\\ 0 & -I_2 \\end{matrix} \\right)$, where $I_i$ is the identity operator on the closed subspace $X_i$ ($i=1, 2$). Furthermore, $T$ has necessarily the form $T = \\left(\\begin{matrix} 0 & * \\\\ * & 0 \\end{matrix} \\right) $ with respect to the same decomposition. In this note we consider the question when $T$ is a commutator of the idempotent $P = \\left(\\begin{matrix} I_1 & 0 \\\\ 0 & 0 \\end{matrix} \\right)$ and some idempotent $Q$ on $X$. We also determine which scalar multiples of unilateral shifts on $l^p$ spaces ($1 \\le p \\le \\infty$) are commutators of idempotent operators.", "revisions": [ { "version": "v1", "updated": "2023-11-28T12:08:02.000Z" } ], "analyses": { "subjects": [ "47B47", "39B42" ], "keywords": [ "commutator", "banach space", "scalar multiples", "idempotent operators", "decomposition" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }