arXiv Analytics

Sign in

arXiv:2311.13153 [math.RT]AbstractReferencesReviewsResources

Unique Factorization For Tensor Products of Parabolic Verma Modules

K. N. Raghavan, V. Sathish Kumar, R. Venkatesh, Sankaran Viswanath

Published 2023-11-22Version 1

Let $\mathfrak{g}$ be a symmetrizable Kac-Moody Lie algebra with Cartan subalgebra $\mathfrak{h}$. We prove a unique factorization property for tensor products of parabolic Verma modules. More generally, we prove unique factorization for products of characters of parabolic Verma modules when restricted to certain subalgebras of $\mathfrak{h}$. These include fixed point subalgebras of $\mathfrak{h}$ under subgroups of diagram automorphisms of $\mathfrak{g}$ and twisted graph automorphisms in the affine case.

Related articles: Most relevant | Search more
arXiv:2009.04147 [math.RT] (Published 2020-09-09)
On the homomorphisms between Parabolic Verma modules over Kac-Moody Algebras
arXiv:1202.0123 [math.RT] (Published 2012-02-01, updated 2012-02-17)
Unique factorization of tensor products for Kac-Moody algebras
arXiv:2404.00266 [math.RT] (Published 2024-03-30)
On tensor products of representations of Lie superalgebras