{ "id": "2311.13153", "version": "v1", "published": "2023-11-22T04:31:26.000Z", "updated": "2023-11-22T04:31:26.000Z", "title": "Unique Factorization For Tensor Products of Parabolic Verma Modules", "authors": [ "K. N. Raghavan", "V. Sathish Kumar", "R. Venkatesh", "Sankaran Viswanath" ], "comment": "20 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak{g}$ be a symmetrizable Kac-Moody Lie algebra with Cartan subalgebra $\\mathfrak{h}$. We prove a unique factorization property for tensor products of parabolic Verma modules. More generally, we prove unique factorization for products of characters of parabolic Verma modules when restricted to certain subalgebras of $\\mathfrak{h}$. These include fixed point subalgebras of $\\mathfrak{h}$ under subgroups of diagram automorphisms of $\\mathfrak{g}$ and twisted graph automorphisms in the affine case.", "revisions": [ { "version": "v1", "updated": "2023-11-22T04:31:26.000Z" } ], "analyses": { "subjects": [ "17B67", "17B10" ], "keywords": [ "parabolic verma modules", "tensor products", "symmetrizable kac-moody lie algebra", "unique factorization property", "fixed point subalgebras" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }