arXiv Analytics

Sign in

arXiv:2311.06289 [math.NT]AbstractReferencesReviewsResources

On some properties of Perron numbers

Nikita Sidorov

Published 2023-11-03Version 1

Let $\theta$ be a real number, $n\in\mathbb N$, and $D_n(\theta)=\left\{\sum_{k=1}^n a_k\theta^{k}\mid a_k\in\{0,\dots,\lfloor \theta\rfloor\}\right\}. $ Let $\theta$ be a Perron number, that is, an algebraic integer $>1$ whose other Galois conjugates are less than $\theta$ in absolute value. I shall prove two results: (1) $\theta^n\ll\#D_n(\theta)\ll\sqrt n \theta^n.$ (2) $\theta$ is of height $\le \lfloor\theta\rfloor$.

Comments: two pages
Categories: math.NT
Subjects: 11R06
Related articles: Most relevant | Search more
arXiv:1601.02094 [math.NT] (Published 2016-01-09)
New properties of the Lerch's transcendent
arXiv:0707.4090 [math.NT] (Published 2007-07-27)
On some properties of $σ(N)$
arXiv:1008.0473 [math.NT] (Published 2010-08-03, updated 2010-08-08)
Algebraic integers as special values of modular units