{ "id": "2311.06289", "version": "v1", "published": "2023-11-03T04:25:24.000Z", "updated": "2023-11-03T04:25:24.000Z", "title": "On some properties of Perron numbers", "authors": [ "Nikita Sidorov" ], "comment": "two pages", "categories": [ "math.NT" ], "abstract": "Let $\\theta$ be a real number, $n\\in\\mathbb N$, and $D_n(\\theta)=\\left\\{\\sum_{k=1}^n a_k\\theta^{k}\\mid a_k\\in\\{0,\\dots,\\lfloor \\theta\\rfloor\\}\\right\\}. $ Let $\\theta$ be a Perron number, that is, an algebraic integer $>1$ whose other Galois conjugates are less than $\\theta$ in absolute value. I shall prove two results: (1) $\\theta^n\\ll\\#D_n(\\theta)\\ll\\sqrt n \\theta^n.$ (2) $\\theta$ is of height $\\le \\lfloor\\theta\\rfloor$.", "revisions": [ { "version": "v1", "updated": "2023-11-03T04:25:24.000Z" } ], "analyses": { "subjects": [ "11R06" ], "keywords": [ "perron number", "properties", "real number", "algebraic integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }