arXiv:2310.18960 [math.CO]AbstractReferencesReviewsResources
Same average in every direction
Published 2023-10-29Version 1
Given a polytope $P\subset R^3$ and a non-zero vector $z \in R^3$, the plane $\{x\in R^3:zx=t\}$ intersects $P$ in convex polygon $P(z,t)$ for $t \in [t^-,t^+]$ where $t^-=\min \{zx: x \in P\}$ and $t^+=\max \{xz: x\in P\}$, $zx$ is the scalar product of $z,x \in R^3$. Let $A(P,z)$ denote the average number of vertices of $P(z,t)$ on the interval $[t^-,t^+]$. For what polytopes is $A(P,z)$ a constant independent of $z$?
Subjects: 52A15
Related articles: Most relevant | Search more
arXiv:math/0611802 [math.CO] (Published 2006-11-27)
An order-refined and generalized version of the Erdos-Szekeres theorem on convex polygons
arXiv:1711.04504 [math.CO] (Published 2017-11-13)
Tilings with noncongruent triangles
arXiv:2105.01120 [math.CO] (Published 2021-05-03)
Upper bounds on the average number of colors in the non-equivalent colorings of a graph