{ "id": "2310.18960", "version": "v1", "published": "2023-10-29T10:02:20.000Z", "updated": "2023-10-29T10:02:20.000Z", "title": "Same average in every direction", "authors": [ "Imre Bárány", "Gábor Domokos" ], "categories": [ "math.CO", "math.MG" ], "abstract": "Given a polytope $P\\subset R^3$ and a non-zero vector $z \\in R^3$, the plane $\\{x\\in R^3:zx=t\\}$ intersects $P$ in convex polygon $P(z,t)$ for $t \\in [t^-,t^+]$ where $t^-=\\min \\{zx: x \\in P\\}$ and $t^+=\\max \\{xz: x\\in P\\}$, $zx$ is the scalar product of $z,x \\in R^3$. Let $A(P,z)$ denote the average number of vertices of $P(z,t)$ on the interval $[t^-,t^+]$. For what polytopes is $A(P,z)$ a constant independent of $z$?", "revisions": [ { "version": "v1", "updated": "2023-10-29T10:02:20.000Z" } ], "analyses": { "subjects": [ "52A15" ], "keywords": [ "non-zero vector", "convex polygon", "scalar product", "average number", "constant independent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }