arXiv Analytics

Sign in

arXiv:2309.16187 [math.AG]AbstractReferencesReviewsResources

Rationality problem for norm one tori for $A_5$ and ${\rm PSL}_2(\mathbb{F}_8)$ extensions

Akinari Hoshi, Aiichi Yamasaki

Published 2023-09-28Version 1

We give a complete answer to the rationality problem (up to stable $k$-equivalence) for norm one tori $T=R^{(1)}_{K/k}(\mathbb{G}_m)$ of $K/k$ whose Galois closures $L/k$ are $A_5\simeq {\rm PSL}_2(\mathbb{F}_4)$ and ${\rm PSL}_2(\mathbb{F}_8)$ extensions. In particular, we prove that $T$ is stably $k$-rational for $G={\rm Gal}(L/k)\simeq {\rm PSL}_2(\mathbb{F}_{8})$, $H={\rm Gal}(L/K)\simeq (C_2)^3$ and $H\simeq (C_2)^3\rtimes C_7$ where $C_n$ is the cyclic group of order $n$. Based on the result, we conjecture that $T$ is stably $k$-rational for $G\simeq {\rm PSL}_2(\mathbb{F}_{2^d})$, $H\simeq (C_2)^d$ and $H\simeq (C_2)^d\rtimes C_{2^d-1}$. Some other cases $G\simeq A_n$, $S_n$, ${\rm GL}_n(\mathbb{F}_{p^d})$, ${\rm SL}_n(\mathbb{F}_{p^d})$, ${\rm PGL}_n(\mathbb{F}_{p^d})$, ${\rm PSL}_n(\mathbb{F}_{p^d})$ and $H\lneq G$ are also investigated for small $n$ and $p^d$.

Comments: 23 pages. arXiv admin note: substantial text overlap with arXiv:2302.06231; text overlap with arXiv:1811.01676, arXiv:1910.01469, arXiv:1811.02145, arXiv:1210.4525
Categories: math.AG, math.NT, math.RA
Subjects: 11E72, 12F20, 13A50, 14E08, 20C10, 20G15
Related articles: Most relevant | Search more
arXiv:1811.01676 [math.AG] (Published 2018-11-05)
Rationality problem for norm one tori
arXiv:1811.02145 [math.AG] (Published 2018-11-06)
Rationality problem for norm one tori, II
arXiv:1411.2790 [math.AG] (Published 2014-11-11)
Rationality problem for quasi-monomial actions