{ "id": "2309.16187", "version": "v1", "published": "2023-09-28T06:17:18.000Z", "updated": "2023-09-28T06:17:18.000Z", "title": "Rationality problem for norm one tori for $A_5$ and ${\\rm PSL}_2(\\mathbb{F}_8)$ extensions", "authors": [ "Akinari Hoshi", "Aiichi Yamasaki" ], "comment": "23 pages. arXiv admin note: substantial text overlap with arXiv:2302.06231; text overlap with arXiv:1811.01676, arXiv:1910.01469, arXiv:1811.02145, arXiv:1210.4525", "categories": [ "math.AG", "math.NT", "math.RA" ], "abstract": "We give a complete answer to the rationality problem (up to stable $k$-equivalence) for norm one tori $T=R^{(1)}_{K/k}(\\mathbb{G}_m)$ of $K/k$ whose Galois closures $L/k$ are $A_5\\simeq {\\rm PSL}_2(\\mathbb{F}_4)$ and ${\\rm PSL}_2(\\mathbb{F}_8)$ extensions. In particular, we prove that $T$ is stably $k$-rational for $G={\\rm Gal}(L/k)\\simeq {\\rm PSL}_2(\\mathbb{F}_{8})$, $H={\\rm Gal}(L/K)\\simeq (C_2)^3$ and $H\\simeq (C_2)^3\\rtimes C_7$ where $C_n$ is the cyclic group of order $n$. Based on the result, we conjecture that $T$ is stably $k$-rational for $G\\simeq {\\rm PSL}_2(\\mathbb{F}_{2^d})$, $H\\simeq (C_2)^d$ and $H\\simeq (C_2)^d\\rtimes C_{2^d-1}$. Some other cases $G\\simeq A_n$, $S_n$, ${\\rm GL}_n(\\mathbb{F}_{p^d})$, ${\\rm SL}_n(\\mathbb{F}_{p^d})$, ${\\rm PGL}_n(\\mathbb{F}_{p^d})$, ${\\rm PSL}_n(\\mathbb{F}_{p^d})$ and $H\\lneq G$ are also investigated for small $n$ and $p^d$.", "revisions": [ { "version": "v1", "updated": "2023-09-28T06:17:18.000Z" } ], "analyses": { "subjects": [ "11E72", "12F20", "13A50", "14E08", "20C10", "20G15" ], "keywords": [ "rationality problem", "extensions", "cyclic group", "complete answer", "galois closures" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }