arXiv:2309.03958 [math.NT]AbstractReferencesReviewsResources
Note on the mean value of the Erdős--Hooley Delta-function
Régis de la Bretèche, Gérald Tenenbaum
Published 2023-09-07Version 1
For integer $n\geqslant 1$ and real $u$, let $\Delta(n,u):=|\{d:d\mid n,\,{\rm e}^u<d\leqslant {\rm e}^{u+1}\}|$. The Erd\H{o}s--Hooley Delta-function is then defined by $\Delta(n):=\max_{u\in{\mathbb R}}\Delta(n,u).$ We improve a recent upper bound by Koukoulopoulos and Tao by showing that $\sum_{n\leqslant x}\Delta(n)\leqslant x(\log_2x)^{2+o(1)}$.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2210.13897 [math.NT] (Published 2022-10-25)
Two upper bounds for the Erdős--Hooley Delta-function
arXiv:1411.5440 [math.NT] (Published 2014-11-20)
Mean Values of Certain Multiplicative Functions and Artin's Conjecture on Primitive Roots
A note on the mean value of the zeta and L-functions. XV