arXiv Analytics

Sign in

arXiv:2210.13897 [math.NT]AbstractReferencesReviewsResources

Two upper bounds for the Erdős--Hooley Delta-function

Régis de la Bretèche, Gérald Tenenbaum

Published 2022-10-25Version 1

For integer $n\geqslant 1$ and real $u$, let $\Delta(n,u):=|\{d:d\mid n,\,{\rm e}^u<d\leqslant {\rm e}^{u+1}\}|$. The Erd\H{o}s--Hooley Delta-function is then defined by $\Delta(n):=\max_{u\in{\mathbb R}}\Delta(n,u).$ We improve the current upper bounds for the average and normal orders of this arithmetic function.

Related articles: Most relevant | Search more
arXiv:2309.03958 [math.NT] (Published 2023-09-07)
Note on the mean value of the Erdős--Hooley Delta-function
arXiv:math/0012253 [math.NT] (Published 2000-12-27)
An arithmetic function of two variables
arXiv:1009.1892 [math.NT] (Published 2010-09-09)
The Convolution Ring of Arithmetic Functions and Symmetric Polynomials