arXiv Analytics

Sign in

arXiv:2308.16367 [math.FA]AbstractReferencesReviewsResources

Automatic continuity of new generalized derivations

Amin Hosseini, Choonkil Park

Published 2023-08-30Version 1

Let $\mathcal{A}$ and $\mathcal{B}$ be two algebras and let $n$ be a positive integer. A linear mapping $D:\mathcal{A} \rightarrow \mathcal{B}$ is called a \emph{strongly generalized derivation of order $n$} if there exist families of linear mappings $\{E_k:\mathcal{A} \rightarrow \mathcal{B}\}_{k = 1}^{n}$, $\{F_k:\mathcal{A} \rightarrow \mathcal{B}\}_{k = 1}^{n}$, $\{G_k:\mathcal{A} \rightarrow \mathcal{B}\}_{k = 1}^{n}$ and $\{H_k:\mathcal{A} \rightarrow \mathcal{B}\}_{k = 1}^{n}$ which satisfy $D(ab) = \sum_{k = 1}^{n}\left[E_k(a) F_k(b) + G_k(a)H_k(b)\right]$ for all $a, b \in \mathcal{A}$. The purpose of this article is to study the automatic continuity of such derivations on Banach algebras and $C^{\ast}$-algebras.

Comments: 15 pages
Categories: math.FA
Subjects: 47B48, 47B47, 46H40
Related articles: Most relevant | Search more
arXiv:math/0611287 [math.FA] (Published 2006-11-09, updated 2007-04-15)
On Automatic Continuity of 3-Homomorphisms on Banach Algebras
arXiv:1306.0499 [math.FA] (Published 2013-06-03)
Generalized Browder's and Weyl's Theorems for Generalized Derivations
arXiv:1605.04097 [math.FA] (Published 2016-05-13)
A class of Banach algebras of generalized matrices