{ "id": "2308.16367", "version": "v1", "published": "2023-08-30T23:56:34.000Z", "updated": "2023-08-30T23:56:34.000Z", "title": "Automatic continuity of new generalized derivations", "authors": [ "Amin Hosseini", "Choonkil Park" ], "comment": "15 pages", "categories": [ "math.FA" ], "abstract": "Let $\\mathcal{A}$ and $\\mathcal{B}$ be two algebras and let $n$ be a positive integer. A linear mapping $D:\\mathcal{A} \\rightarrow \\mathcal{B}$ is called a \\emph{strongly generalized derivation of order $n$} if there exist families of linear mappings $\\{E_k:\\mathcal{A} \\rightarrow \\mathcal{B}\\}_{k = 1}^{n}$, $\\{F_k:\\mathcal{A} \\rightarrow \\mathcal{B}\\}_{k = 1}^{n}$, $\\{G_k:\\mathcal{A} \\rightarrow \\mathcal{B}\\}_{k = 1}^{n}$ and $\\{H_k:\\mathcal{A} \\rightarrow \\mathcal{B}\\}_{k = 1}^{n}$ which satisfy $D(ab) = \\sum_{k = 1}^{n}\\left[E_k(a) F_k(b) + G_k(a)H_k(b)\\right]$ for all $a, b \\in \\mathcal{A}$. The purpose of this article is to study the automatic continuity of such derivations on Banach algebras and $C^{\\ast}$-algebras.", "revisions": [ { "version": "v1", "updated": "2023-08-30T23:56:34.000Z" } ], "analyses": { "subjects": [ "47B48", "47B47", "46H40" ], "keywords": [ "automatic continuity", "generalized derivation", "banach algebras", "linear mapping" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }