arXiv Analytics

Sign in

arXiv:2308.03050 [math.NT]AbstractReferencesReviewsResources

An inductive proof of the Frobenius coin problem of two denominators

Giorgos Kapetanakis, Ioannis Rizos

Published 2023-08-06Version 1

Let $a,b$ be positive, relatively prime, integers. We prove, using induction, that for every $d > ab-a-b$ there exist $x,y\in\mathbb{Z}_{\geq 0}$, such that $d=ax+by$.

Comments: 5 pages
Categories: math.NT
Subjects: 11D07, 11D04
Related articles: Most relevant | Search more
arXiv:1801.00517 [math.NT] (Published 2018-01-01)
Dedekind Sums with Even Denominators
arXiv:1608.07240 [math.NT] (Published 2016-08-15)
An Inductive Proof of Bertrand Postulate
arXiv:1301.2986 [math.NT] (Published 2013-01-14, updated 2013-01-20)
An inductive proof of Straub's q-analogue of Ljunggren's congruence