{ "id": "2308.03050", "version": "v1", "published": "2023-08-06T08:28:07.000Z", "updated": "2023-08-06T08:28:07.000Z", "title": "An inductive proof of the Frobenius coin problem of two denominators", "authors": [ "Giorgos Kapetanakis", "Ioannis Rizos" ], "comment": "5 pages", "categories": [ "math.NT" ], "abstract": "Let $a,b$ be positive, relatively prime, integers. We prove, using induction, that for every $d > ab-a-b$ there exist $x,y\\in\\mathbb{Z}_{\\geq 0}$, such that $d=ax+by$.", "revisions": [ { "version": "v1", "updated": "2023-08-06T08:28:07.000Z" } ], "analyses": { "subjects": [ "11D07", "11D04" ], "keywords": [ "frobenius coin problem", "inductive proof", "denominators" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }