arXiv Analytics

Sign in

arXiv:2307.16197 [math.AP]AbstractReferencesReviewsResources

The Cauchy problem associated to the logarithmic Laplacian with an application to the fundamental solution

Huyuan Chen, Laurent Véron

Published 2023-07-30Version 1

Let $\lnlap$ be the logarithmic Laplacian operator with Fourier symbol $2\ln |\zeta|$, we study the expression of the diffusion kernel which is associated to the equation $$\partial_tu+ \lnlap u=0 \ \ {\rm in}\ \, (0,\tfrac N2) \times \R^N,\quad\quad u(0,\cdot)=0\ \ {\rm in}\ \, \R^N\setminus \{0\}.$$ We apply our results to give a classification of the solutions of $$\left\{ \arraycolsep=1pt \begin{array}{lll} \displaystyle \partial_tu+ \lnlap u=0\quad \ &{\rm in}\ \ (0,T)\times \R^N\\[2.5mm] \phantom{ \lnlap \ \, } \displaystyle u(0,\cdot)=f\quad \ &{\rm{in}}\ \ \R^N \end{array} \right. $$ and obtain an expression of the fundamental solution of the associated stationary equation in $\R^N$, and of the fundamental solution in a bounded domain, i.e. $$\lnlap u=k\delta_0\quad {\rm in}\ \ \cD'(\Omega)\quad \text{such that }\,u=0\quad {\rm in}\ \ \R^N\setminus\Omega. $$

Related articles: Most relevant | Search more
arXiv:math/0108184 [math.AP] (Published 2001-08-28, updated 2001-08-29)
A bilinear Airy- estimate with application to gKdV-3
arXiv:1010.1906 [math.AP] (Published 2010-10-10)
Unique Continuation for Schrödinger Evolutions, with applications to profiles of concentration and traveling waves
arXiv:1011.2911 [math.AP] (Published 2010-11-12)
Five lectures on optimal transportation: Geometry, regularity and applications