{ "id": "2307.16197", "version": "v1", "published": "2023-07-30T10:33:11.000Z", "updated": "2023-07-30T10:33:11.000Z", "title": "The Cauchy problem associated to the logarithmic Laplacian with an application to the fundamental solution", "authors": [ "Huyuan Chen", "Laurent Véron" ], "comment": "54 pages", "categories": [ "math.AP" ], "abstract": "Let $\\lnlap$ be the logarithmic Laplacian operator with Fourier symbol $2\\ln |\\zeta|$, we study the expression of the diffusion kernel which is associated to the equation $$\\partial_tu+ \\lnlap u=0 \\ \\ {\\rm in}\\ \\, (0,\\tfrac N2) \\times \\R^N,\\quad\\quad u(0,\\cdot)=0\\ \\ {\\rm in}\\ \\, \\R^N\\setminus \\{0\\}.$$ We apply our results to give a classification of the solutions of $$\\left\\{ \\arraycolsep=1pt \\begin{array}{lll} \\displaystyle \\partial_tu+ \\lnlap u=0\\quad \\ &{\\rm in}\\ \\ (0,T)\\times \\R^N\\\\[2.5mm] \\phantom{ \\lnlap \\ \\, } \\displaystyle u(0,\\cdot)=f\\quad \\ &{\\rm{in}}\\ \\ \\R^N \\end{array} \\right. $$ and obtain an expression of the fundamental solution of the associated stationary equation in $\\R^N$, and of the fundamental solution in a bounded domain, i.e. $$\\lnlap u=k\\delta_0\\quad {\\rm in}\\ \\ \\cD'(\\Omega)\\quad \\text{such that }\\,u=0\\quad {\\rm in}\\ \\ \\R^N\\setminus\\Omega. $$", "revisions": [ { "version": "v1", "updated": "2023-07-30T10:33:11.000Z" } ], "analyses": { "subjects": [ "35K05", "35A08" ], "keywords": [ "fundamental solution", "cauchy problem", "application", "logarithmic laplacian operator", "fourier symbol" ], "note": { "typesetting": "TeX", "pages": 54, "language": "en", "license": "arXiv", "status": "editable" } } }