arXiv Analytics

Sign in

arXiv:2307.14608 [math.RT]AbstractReferencesReviewsResources

Smooth modules over the N=1 Bondi-Metzner-Sachs superalgebra

Dong Liu, Yufeng Pei, Limeng Xia, Kaiming Zhao

Published 2023-07-27Version 1

In this paper, we present a determinant formula for the contravariant form on Verma modules over the N=1 Bondi-Metzner-Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the N=1 BMS superalgebra. We also utilize the Heisenberg-Clifford vertex superalgebra to construct a free field realization for the N=1 BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the N=1 BMS superalgebra, which includes Fock modules and certain Whittaker modules.

Comments: Latex 27pages, comments are welcome!
Categories: math.RT, math.QA, math.RA
Subjects: 17B65, 17B68, 17B69, 17B70, 81R10
Related articles: Most relevant | Search more
arXiv:2412.17000 [math.RT] (Published 2024-12-22)
Singular vectors, characters, and composition series for the N=1 BMS superalgebra
arXiv:2409.03159 [math.RT] (Published 2024-09-05)
Whittaker modules for a subalgebra of N=2 superconformal algebra
arXiv:1603.01555 [math.RT] (Published 2016-03-04)
An approach to categorification of Verma modules