{ "id": "2307.14608", "version": "v1", "published": "2023-07-27T03:47:58.000Z", "updated": "2023-07-27T03:47:58.000Z", "title": "Smooth modules over the N=1 Bondi-Metzner-Sachs superalgebra", "authors": [ "Dong Liu", "Yufeng Pei", "Limeng Xia", "Kaiming Zhao" ], "comment": "Latex 27pages, comments are welcome!", "categories": [ "math.RT", "math.QA", "math.RA" ], "abstract": "In this paper, we present a determinant formula for the contravariant form on Verma modules over the N=1 Bondi-Metzner-Sachs (BMS) superalgebra. This formula establishes a necessary and sufficient condition for the irreducibility of the Verma modules. We then introduce and characterize a class of simple smooth modules that generalize both Verma and Whittaker modules over the N=1 BMS superalgebra. We also utilize the Heisenberg-Clifford vertex superalgebra to construct a free field realization for the N=1 BMS superalgebra. This free field realization allows us to obtain a family of natural smooth modules over the N=1 BMS superalgebra, which includes Fock modules and certain Whittaker modules.", "revisions": [ { "version": "v1", "updated": "2023-07-27T03:47:58.000Z" } ], "analyses": { "subjects": [ "17B65", "17B68", "17B69", "17B70", "81R10" ], "keywords": [ "bondi-metzner-sachs superalgebra", "free field realization", "bms superalgebra", "whittaker modules", "verma modules" ], "note": { "typesetting": "LaTeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }