arXiv Analytics

Sign in

arXiv:2307.13134 [math.NT]AbstractReferencesReviewsResources

Vanishing of the p-part of the Shafarevich-Tate group of a modular form and its consequences for Anticyclotomic Iwasawa Theory

Luca Mastella

Published 2023-07-24Version 1

In this article we prove a refinement of a theorem of Longo and Vigni in the anticyclotomic Iwasawa theory for modular forms. More precisely we give a definition for the ($\mathfrak{p}$-part of the) Shafarevich-Tate groups $\widetilde{\mathrm{sha}}_{\mathfrak{p}^\infty}(f/K)$ and $\widetilde{\mathrm{sha}}_{\mathfrak{p}^\infty}(f/K_\infty)$ of a modular form $f$ of weight $k >2$, over an imaginary quadratic field $K$ satisfying the Heegner hypothesis and over its anticyclotomic $\mathbb{Z}_p$-extension $K_\infty$ and we show that if the basic generalized Heegner cycle $z_{f, K}$ is non-torsion and not divisible by $p$, then $\widetilde{\mathrm{sha}}_{\mathfrak{p}^\infty}(f/K) = \widetilde{\mathrm{sha}}_{\mathfrak{p}^\infty}(f/K_\infty) = 0$.

Related articles: Most relevant | Search more
arXiv:math/0610694 [math.NT] (Published 2006-10-23)
On anticyclotomic mu-invariants of modular forms
arXiv:2211.03722 [math.NT] (Published 2022-11-07)
Anticyclotomic Iwasawa theory of abelian varieties of $\mathrm{GL}_2$-type at non-ordinary primes
arXiv:1007.2317 [math.NT] (Published 2010-07-14, updated 2011-01-27)
Ray class invariants over imaginary quadratic fields