{ "id": "2307.13134", "version": "v1", "published": "2023-07-24T21:25:06.000Z", "updated": "2023-07-24T21:25:06.000Z", "title": "Vanishing of the p-part of the Shafarevich-Tate group of a modular form and its consequences for Anticyclotomic Iwasawa Theory", "authors": [ "Luca Mastella" ], "comment": "33 pages", "categories": [ "math.NT" ], "abstract": "In this article we prove a refinement of a theorem of Longo and Vigni in the anticyclotomic Iwasawa theory for modular forms. More precisely we give a definition for the ($\\mathfrak{p}$-part of the) Shafarevich-Tate groups $\\widetilde{\\mathrm{sha}}_{\\mathfrak{p}^\\infty}(f/K)$ and $\\widetilde{\\mathrm{sha}}_{\\mathfrak{p}^\\infty}(f/K_\\infty)$ of a modular form $f$ of weight $k >2$, over an imaginary quadratic field $K$ satisfying the Heegner hypothesis and over its anticyclotomic $\\mathbb{Z}_p$-extension $K_\\infty$ and we show that if the basic generalized Heegner cycle $z_{f, K}$ is non-torsion and not divisible by $p$, then $\\widetilde{\\mathrm{sha}}_{\\mathfrak{p}^\\infty}(f/K) = \\widetilde{\\mathrm{sha}}_{\\mathfrak{p}^\\infty}(f/K_\\infty) = 0$.", "revisions": [ { "version": "v1", "updated": "2023-07-24T21:25:06.000Z" } ], "analyses": { "subjects": [ "11R23", "11F11" ], "keywords": [ "anticyclotomic iwasawa theory", "modular form", "shafarevich-tate group", "consequences", "imaginary quadratic field" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }