arXiv:2307.10887 [math.AP]AbstractReferencesReviewsResources
Decay at infinity for solutions to some fractional parabolic equations
Agnid Banerjee, Abhishek Ghosh
Published 2023-07-20Version 1
For $s \in [1/2, 1)$, let $u$ solve $(\partial_t - \Delta)^s u = Vu$ in $\mathbb R^{n} \times [-T, 0]$ for some $T>0$ where $||V||_{ C^2(\mathbb R^n \times [-T, 0])} < \infty$. We show that if for some $0< c< T$ and $\epsilon>0$ $$\frac{1}{c} \int_{[-c,0]} u^2(x, t) dt \leq Ce^{-|x|^{2+\epsilon}}\ \forall x \in \mathbb R^n,$$ then $u \equiv 0$ in $\mathbb R^{n} \times [-T, 0]$.
Comments: arXiv admin note: text overlap with arXiv:2306.00341
Categories: math.AP
Keywords: fractional parabolic equations
Related articles: Most relevant | Search more
arXiv:2006.14094 [math.AP] (Published 2020-06-24)
Asymptotic method of moving planes for fractional parabolic equations
arXiv:2108.02075 [math.AP] (Published 2021-08-04)
Liouville theorems for fractional parabolic equations
arXiv:2108.11840 [math.AP] (Published 2021-08-26)
Sobolev estimates for fractional parabolic equations with space-time non-local operators