{ "id": "2307.10887", "version": "v1", "published": "2023-07-20T14:06:00.000Z", "updated": "2023-07-20T14:06:00.000Z", "title": "Decay at infinity for solutions to some fractional parabolic equations", "authors": [ "Agnid Banerjee", "Abhishek Ghosh" ], "comment": "arXiv admin note: text overlap with arXiv:2306.00341", "categories": [ "math.AP" ], "abstract": "For $s \\in [1/2, 1)$, let $u$ solve $(\\partial_t - \\Delta)^s u = Vu$ in $\\mathbb R^{n} \\times [-T, 0]$ for some $T>0$ where $||V||_{ C^2(\\mathbb R^n \\times [-T, 0])} < \\infty$. We show that if for some $0< c< T$ and $\\epsilon>0$ $$\\frac{1}{c} \\int_{[-c,0]} u^2(x, t) dt \\leq Ce^{-|x|^{2+\\epsilon}}\\ \\forall x \\in \\mathbb R^n,$$ then $u \\equiv 0$ in $\\mathbb R^{n} \\times [-T, 0]$.", "revisions": [ { "version": "v1", "updated": "2023-07-20T14:06:00.000Z" } ], "analyses": { "keywords": [ "fractional parabolic equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }