arXiv Analytics

Sign in

arXiv:2307.05244 [math.NT]AbstractReferencesReviewsResources

A new Andrews--Crandall-type identity and the number of integer solutions to $x^2+2y^2+2z^2=n$

Mariia Dospolova, Ekaterina Kochetkova, Eric T. Mortenson

Published 2023-07-11Version 1

Using a higher-dimensional analog of an identity known to Kronecker, we discover a new Andrews--Crandall-type identity and use it to count the number of integer solutions to $x^2+2y^2+2z^2=n$.

Related articles: Most relevant | Search more
arXiv:1603.00080 [math.NT] (Published 2016-02-29)
On integer solutions to x^5 - (x+1)^5 -(x+2)^5 +(x+3)^5 = 5^m + 5^n
arXiv:2104.08932 [math.NT] (Published 2021-04-18)
Integer solutions of $a^2+ab+b^2=7^n$
arXiv:math/0603569 [math.NT] (Published 2006-03-24, updated 2007-04-10)
Density of integer solutions to diagonal quadratic forms