{ "id": "2307.05244", "version": "v1", "published": "2023-07-11T13:21:16.000Z", "updated": "2023-07-11T13:21:16.000Z", "title": "A new Andrews--Crandall-type identity and the number of integer solutions to $x^2+2y^2+2z^2=n$", "authors": [ "Mariia Dospolova", "Ekaterina Kochetkova", "Eric T. Mortenson" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "Using a higher-dimensional analog of an identity known to Kronecker, we discover a new Andrews--Crandall-type identity and use it to count the number of integer solutions to $x^2+2y^2+2z^2=n$.", "revisions": [ { "version": "v1", "updated": "2023-07-11T13:21:16.000Z" } ], "analyses": { "keywords": [ "integer solutions", "andrews-crandall-type identity", "higher-dimensional analog" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }