arXiv Analytics

Sign in

arXiv:2306.08113 [math.PR]AbstractReferencesReviewsResources

Connectivity threshold for superpositions of Bernoulli random graphs

Daumilas Ardickas, Mindaugas Bloznelis

Published 2023-06-13Version 1

Let $G_1,\dots, G_m$ be independent Bernoulli random subgraphs of the complete graph ${\cal K}_n$ having variable sizes $x_1,\dots, x_m\in [n]$ and densities $q_1,\dots, q_m\in [0,1]$. Letting $n,m\to+\infty$, we study the connectivity threshold for the union $\cup_{i=1}^mG_i$ defined on the vertex set of ${\cal K}_n$. Assuming that the empirical distribution $P_{n,m}$ of the pairs $(x_1,q_1),\dots, (x_m,q_m)$ converges to a probability distribution $P$ we show that the threshold is defined by the mixed moments $\kappa_n=\iint x(1-(1-q)^{|x-1|})P_{n,m}(dx,dq)$. For $\ln n-\frac{m}{n}\kappa_n\to-\infty$ we have $P\{\cup_{i=1}^mG_i$ is connected$\}\to 1$ and for $\ln n-\frac{m}{n}\kappa_n\to+\infty$ we have $P\{\cup_{i=1}^mG_i$ is connected$\}\to 0$. Interestingly, this dichotomy only holds if the mixed moment $\iint x(1-(1-q)^{|x-1|})\ln(1+x)P(dx,dq)<\infty$.

Related articles: Most relevant | Search more
arXiv:2311.09317 [math.PR] (Published 2023-11-15)
Connectivity threshold for superpositions of Bernoulli random graphs. II
arXiv:1103.0351 [math.PR] (Published 2011-03-02)
Connectivity threshold for Bluetooth graphs
arXiv:2107.02683 [math.PR] (Published 2021-07-06)
Normal and stable approximation to subgraph counts in superpositions of Bernoulli random graphs