{ "id": "2306.08113", "version": "v1", "published": "2023-06-13T20:05:29.000Z", "updated": "2023-06-13T20:05:29.000Z", "title": "Connectivity threshold for superpositions of Bernoulli random graphs", "authors": [ "Daumilas Ardickas", "Mindaugas Bloznelis" ], "categories": [ "math.PR", "math.CO" ], "abstract": "Let $G_1,\\dots, G_m$ be independent Bernoulli random subgraphs of the complete graph ${\\cal K}_n$ having variable sizes $x_1,\\dots, x_m\\in [n]$ and densities $q_1,\\dots, q_m\\in [0,1]$. Letting $n,m\\to+\\infty$, we study the connectivity threshold for the union $\\cup_{i=1}^mG_i$ defined on the vertex set of ${\\cal K}_n$. Assuming that the empirical distribution $P_{n,m}$ of the pairs $(x_1,q_1),\\dots, (x_m,q_m)$ converges to a probability distribution $P$ we show that the threshold is defined by the mixed moments $\\kappa_n=\\iint x(1-(1-q)^{|x-1|})P_{n,m}(dx,dq)$. For $\\ln n-\\frac{m}{n}\\kappa_n\\to-\\infty$ we have $P\\{\\cup_{i=1}^mG_i$ is connected$\\}\\to 1$ and for $\\ln n-\\frac{m}{n}\\kappa_n\\to+\\infty$ we have $P\\{\\cup_{i=1}^mG_i$ is connected$\\}\\to 0$. Interestingly, this dichotomy only holds if the mixed moment $\\iint x(1-(1-q)^{|x-1|})\\ln(1+x)P(dx,dq)<\\infty$.", "revisions": [ { "version": "v1", "updated": "2023-06-13T20:05:29.000Z" } ], "analyses": { "subjects": [ "05C80", "05C82", "05C40" ], "keywords": [ "bernoulli random graphs", "connectivity threshold", "superpositions", "independent bernoulli random subgraphs", "mixed moment" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }