arXiv Analytics

Sign in

arXiv:2305.17657 [math.FA]AbstractReferencesReviewsResources

Power numerical radius inequalities from an extension of Buzano's inequality

Pintu Bhunia

Published 2023-05-28Version 1

Several numerical radius inequalities are studied by developing an extension of the Buzano's inequality. It is shown that if $T$ is a bounded linear operator on a complex Hilbert space, then \begin{eqnarray*} w^n(T) &\leq& \frac{1}{2^{n-1}} w(T^n)+ \sum_{k=1}^{n-1} \frac{1}{2^{k}} \left\|T^k \right\| \left\|T \right\|^{n-k}, \end{eqnarray*} for every positive integer $n\geq 2.$ This is a non-trivial improvement of the classical inequality $w(T)\leq \|T\|.$ The above inequality gives an estimation for the numerical radius of the nilpotent operators, i.e., if $T^n=0$ for some least positive integer $n\geq 2$, then \begin{eqnarray*} w(T) &\leq& \left(\sum_{k=1}^{n-1} \frac{1}{2^{k}} \left\|T^k \right\| \left\|T \right\|^{n-k}\right)^{1/n} \leq \left( 1- \frac{1}{2^{n-1}}\right)^{1/n} \|T\|. \end{eqnarray*} Also, we deduce a reverse inequality for the numerical radius power inequality $w(T^n)\leq w^n(T)$. We show that if $\|T\|\leq 1$, then \begin{eqnarray*} w^n(T) &\leq& \frac{1}{2^{n-1}} w(T^n)+ 1- \frac{1}{2^{n-1}}, \end{eqnarray*} for every positive integer $n\geq 2.$ This inequality is sharp.

Related articles: Most relevant | Search more
arXiv:1908.11182 [math.FA] (Published 2019-08-29)
On inequalities for A-numerical radius of operators
arXiv:1904.12096 [math.FA] (Published 2019-04-27)
Bounds of numerical radius of bounded linear operator
arXiv:2301.03877 [math.FA] (Published 2023-01-10)
Numerical radius inequalities of bounded linear operators and $(α,β)$-normal operators