{ "id": "2305.17657", "version": "v1", "published": "2023-05-28T07:47:07.000Z", "updated": "2023-05-28T07:47:07.000Z", "title": "Power numerical radius inequalities from an extension of Buzano's inequality", "authors": [ "Pintu Bhunia" ], "comment": "11 pages", "categories": [ "math.FA" ], "abstract": "Several numerical radius inequalities are studied by developing an extension of the Buzano's inequality. It is shown that if $T$ is a bounded linear operator on a complex Hilbert space, then \\begin{eqnarray*} w^n(T) &\\leq& \\frac{1}{2^{n-1}} w(T^n)+ \\sum_{k=1}^{n-1} \\frac{1}{2^{k}} \\left\\|T^k \\right\\| \\left\\|T \\right\\|^{n-k}, \\end{eqnarray*} for every positive integer $n\\geq 2.$ This is a non-trivial improvement of the classical inequality $w(T)\\leq \\|T\\|.$ The above inequality gives an estimation for the numerical radius of the nilpotent operators, i.e., if $T^n=0$ for some least positive integer $n\\geq 2$, then \\begin{eqnarray*} w(T) &\\leq& \\left(\\sum_{k=1}^{n-1} \\frac{1}{2^{k}} \\left\\|T^k \\right\\| \\left\\|T \\right\\|^{n-k}\\right)^{1/n} \\leq \\left( 1- \\frac{1}{2^{n-1}}\\right)^{1/n} \\|T\\|. \\end{eqnarray*} Also, we deduce a reverse inequality for the numerical radius power inequality $w(T^n)\\leq w^n(T)$. We show that if $\\|T\\|\\leq 1$, then \\begin{eqnarray*} w^n(T) &\\leq& \\frac{1}{2^{n-1}} w(T^n)+ 1- \\frac{1}{2^{n-1}}, \\end{eqnarray*} for every positive integer $n\\geq 2.$ This inequality is sharp.", "revisions": [ { "version": "v1", "updated": "2023-05-28T07:47:07.000Z" } ], "analyses": { "subjects": [ "47A12", "47A30", "15A60" ], "keywords": [ "power numerical radius inequalities", "buzanos inequality", "positive integer", "complex hilbert space", "numerical radius power inequality" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }