arXiv:2305.15892 [math.RT]AbstractReferencesReviewsResources
On the classification of unitary highest weight modules
Pavle Pandžić, Ana Prlić, Vladimír Souček, Vít Tuček
Published 2023-05-25Version 1
In the 1980s, Enright, Howe and Wallach [EHW] and independently Jakobsen [J] gave a complete classification of the unitary highest weight modules. In this paper we give a more direct and elementary proof of the same result for the (universal covers of the) Lie groups $Sp(2n, \mathbb{R}), SO^{*}(2n)$ and $SU(p, q)$. We also show how to describe the set of unitary highest weight modules with a given infinitesimal character.
Related articles: Most relevant | Search more
arXiv:2412.06317 [math.RT] (Published 2024-12-09)
On the classification of unitary highest weight modules in the exceptional cases
arXiv:math/0607002 [math.RT] (Published 2006-06-30)
Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs
A characterization of the unitary highest weight modules by Euclidean Jordan algebras