{ "id": "2305.15892", "version": "v1", "published": "2023-05-25T09:45:53.000Z", "updated": "2023-05-25T09:45:53.000Z", "title": "On the classification of unitary highest weight modules", "authors": [ "Pavle Pandžić", "Ana Prlić", "Vladimír Souček", "Vít Tuček" ], "comment": "31 pages", "categories": [ "math.RT" ], "abstract": "In the 1980s, Enright, Howe and Wallach [EHW] and independently Jakobsen [J] gave a complete classification of the unitary highest weight modules. In this paper we give a more direct and elementary proof of the same result for the (universal covers of the) Lie groups $Sp(2n, \\mathbb{R}), SO^{*}(2n)$ and $SU(p, q)$. We also show how to describe the set of unitary highest weight modules with a given infinitesimal character.", "revisions": [ { "version": "v1", "updated": "2023-05-25T09:45:53.000Z" } ], "analyses": { "subjects": [ "22E47" ], "keywords": [ "unitary highest weight modules", "complete classification", "elementary proof", "universal covers", "lie groups" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }