arXiv:2305.11587 [math.CA]AbstractReferencesReviewsResources
On the Hausdorff dimension of circular Furstenberg sets
Katrin Fässler, Jiayin Liu, Tuomas Orponen
Published 2023-05-19Version 1
For $0 \leq s \leq 1$ and $0 \leq t \leq 3$, a set $F \subset \mathbb{R}^{2}$ is called a circular $(s,t)$-Furstenberg set if there exists a family of circles $\mathcal{S}$ of Hausdorff dimension $\dim_{\mathrm{H}} \mathcal{S} \geq t$ such that $$\dim_{\mathrm{H}} (F \cap S) \geq s, \qquad S \in \mathcal{S}.$$ We prove that if $0 \leq t \leq s \leq 1$, then every circular $(s,t)$-Furstenberg set $F \subset \mathbb{R}^{2}$ has Hausdorff dimension $\dim_{\mathrm{H}} F \geq s + t$. The case $s = 1$ follows from earlier work of Wolff on circular Kakeya sets.
Comments: 73 pages, 5 figures
Related articles: Most relevant | Search more
On the distance sets spanned by sets of dimension $d/2$ in $\mathbb{R}^d$
arXiv:2204.08428 [math.CA] (Published 2022-04-15)
Thickness and a gap lemma in $\mathbb{R}^d$
arXiv:2106.03338 [math.CA] (Published 2021-06-07)
On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane