arXiv:2112.09044 [math.CA]AbstractReferencesReviewsResources
On the distance sets spanned by sets of dimension $d/2$ in $\mathbb{R}^d$
Published 2021-12-16, updated 2022-01-19Version 2
We establish the dimension version of Falconer's distance set conjecture for sets of equal Hausdorff and packing dimension (in particular, for Ahlfors-regular sets) in all ambient dimensions. In dimensions $d=2$ or $3$, we obtain the first explicit estimates for the dimensions of distance sets of general Borel sets of dimension $d/2$; for example, we show that the set of distances spanned by a planar Borel set of Hausdorff dimension $1$ has Hausdorff dimension at least $(\sqrt{5}-1)/2\approx 0.618$. In higher dimensions we obtain explicit estimates for the lower Minkowski dimension of the distance sets of sets of dimension $d/2$. These results rely on new estimates for the dimensions of radial projections that may have independent interest.