arXiv Analytics

Sign in

arXiv:2305.08182 [math.FA]AbstractReferencesReviewsResources

On $g-$Fusion Frames Representations via Linear Operators

S. Jahedi, F. Javadi, M. J. Mehdipour

Published 2023-05-14Version 1

Let $\{\frak{M} _k \} _{ k \in \mathbb{Z}} $ be a sequence of closed subspaces of Hilbert space $H$, and let $\{\Theta_k\}_{k \in \mathbb{Z}}$ be a sequence of linear operators from $H$ into $\frak{M}_k$, $k \in \mathbb{Z}$. In the definition of fusion frames, we replace the orthogonal projections on $\frak{M} _k$ by $\Theta_k$ and find a slight generalization of fusion frames. In the case where, $\Theta_k$ is self-adjoint and $\Theta_k(\frak{M} _k)= \frak{M} _k$ for all $k \in \mathbb{Z}$, we show that if a $g-$fusion frame $\{(\frak{M} _k, \Theta_k)\}_{k \in \mathbb{Z}}$ is represented via a linear operator $T$ on $\hbox{span} \{\frak{M} _k\}_{ k \in \mathbb{Z}}$, then $T$ is bounded; moreover, if $\{(\frak{M} _k, \Theta_k)\}_{k \in \mathbb{Z}}$ is a tight $g-$fusion frame, then $T$ is not invertible. We also study the perturbation and the stability of these fusion frames. Finally, we give some examples to show the validity of the results.

Related articles: Most relevant | Search more
arXiv:0708.1657 [math.FA] (Published 2007-08-13, updated 2008-04-30)
Some inequalities for $(α, β)$-normal operators in Hilbert spaces
arXiv:1308.6420 [math.FA] (Published 2013-08-29, updated 2013-12-14)
Avoiding σ-porous sets in Hilbert spaces
arXiv:1211.2127 [math.FA] (Published 2012-11-06, updated 2014-06-11)
The splitting lemmas for nonsmooth functionals on Hilbert spaces I