{ "id": "2305.08182", "version": "v1", "published": "2023-05-14T15:20:09.000Z", "updated": "2023-05-14T15:20:09.000Z", "title": "On $g-$Fusion Frames Representations via Linear Operators", "authors": [ "S. Jahedi", "F. Javadi", "M. J. Mehdipour" ], "categories": [ "math.FA" ], "abstract": "Let $\\{\\frak{M} _k \\} _{ k \\in \\mathbb{Z}} $ be a sequence of closed subspaces of Hilbert space $H$, and let $\\{\\Theta_k\\}_{k \\in \\mathbb{Z}}$ be a sequence of linear operators from $H$ into $\\frak{M}_k$, $k \\in \\mathbb{Z}$. In the definition of fusion frames, we replace the orthogonal projections on $\\frak{M} _k$ by $\\Theta_k$ and find a slight generalization of fusion frames. In the case where, $\\Theta_k$ is self-adjoint and $\\Theta_k(\\frak{M} _k)= \\frak{M} _k$ for all $k \\in \\mathbb{Z}$, we show that if a $g-$fusion frame $\\{(\\frak{M} _k, \\Theta_k)\\}_{k \\in \\mathbb{Z}}$ is represented via a linear operator $T$ on $\\hbox{span} \\{\\frak{M} _k\\}_{ k \\in \\mathbb{Z}}$, then $T$ is bounded; moreover, if $\\{(\\frak{M} _k, \\Theta_k)\\}_{k \\in \\mathbb{Z}}$ is a tight $g-$fusion frame, then $T$ is not invertible. We also study the perturbation and the stability of these fusion frames. Finally, we give some examples to show the validity of the results.", "revisions": [ { "version": "v1", "updated": "2023-05-14T15:20:09.000Z" } ], "analyses": { "keywords": [ "linear operator", "fusion frames representations", "hilbert space", "slight generalization", "orthogonal projections" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }